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Abstract—Unreadable code could be a breeding ground for
errors. Thus, previous work defined approaches based on ma-
chine learning to automatically assess code readability that
can warn developers when some code artifacts (e.g., classes)
become unreadable. Given datasets of code snippets manually
evaluated by several developers in terms of their perceived
readability, such approaches (i) establish a snippet-level ground
truth, and (ii) train a binary (readable/unreadable) or a ternary
(readable/neutral/unreadable) code readability classifier. Given
this procedure, all existing approaches neglect the subjectiveness
of code readability, i.e., the possible different developer-specific
nuances in the code readability perception. In this paper, we
aim to understand to what extent it is possible to assess code
readability as subjectively perceived by developers through a
personalized code readability assessment approach. This problem
is significantly more challenging than the snippet-level classi-
fication problem: We assume that, in a realistic scenario, a
given developer is keen to provide only a few code readability
evaluations, thus less data is available. For this reason, we adopt
an LLM with few-shot learning to achieve our goal. Our results,
however, show that such an approach achieves worse results than
a state-of-the-art feature-based model that is trained to work
at the snippet-level. We tried to understand why this happens
by looking more closely at the quality of the available code
readability datasets and assessed the consistency of the inter-
developer evaluations. We observed that up to a third of the
evaluations are self-contradictory. Our negative results call for
new and more reliable code readability datasets.

Index Terms—Code Readability, Developer-Centric, Large
Language Models

I. INTRODUCTION

Developers read code all the time. They might do that to fix
a bug, to improve an existing code base, or even while they
write code from scratch if they need to evaluate the code pro-
vided by a coding assistant such as Copilot. Indeed, as research
shows, code reading and understanding is the most common
activity made by software developers [13]]. Therefore, code
readability, i.e., the ease with which a program can convey
information to a reader, is a particularly desirable property of
the source code. Unreadable code can both make developers
struggle more while they try to acquire information from the
source code (which implies higher software maintenance costs
in the long run) and could better hide bugs. Automatically
finding unreadable code in large code bases is important for
several reasons. Practitioners could use this information to
decide where they should focus their effort in code cleaning
and improvement activities. Researchers, on the other hand,
can study how readability (or lack thereof) impacts other
software properties [18]], [19] or activities [15].

Given the potential importance of automatically assess-
ing code readability, previous work focused on defining ap-
proaches to achieve this goal. Such approaches are based
on Machine Learning (ML) or Deep Learning (DL) models
and, thus, they need to be trained on a labeled dataset.
Earlier ML-based approaches [6], [16], [7], [20] relied on
feature engineering. They defined structural, visual, and textual
features that can be measured on the a given source code
snippet. Those features are then used to characterize the
(labeled) source code. Finally, such datasets are adopted to
train a binary classifier that can categorize code snippets
as “readable” or “unreadable.” Recent literature explored the
possibility of adopting DL-based approaches [11[], [10] to
improve the accuracy of existing models. In this case, it is not
necessary to manually define the features: The source code is
treated as either an image [11]], [[LO] or text [10].

To the best of our knowledge, the literature provides three
labeled code readability datasets, including single developer
assessments on a non-binary scale, for training and evaluating
readability assessment approaches [6]], [7], [21]. All of them
are defined using the same core procedure. Several developers
were asked to manually assess the readability of a given
snippets using a 1 to 5 Likert scale, where 1 indicates that
the snippet is completely unreadable, while 5 indicates that
the snippet is completely readable. Then, given a snippet, all
the evaluation it received are combined (e.g., by computing
their average) to define the snippet-level code readability
score ground truth. Such values are used to determine the
labels, which might be two (readable or unreadable) or three
(readable, unreadable, or neutral). The mapping is based on
the scores distribution, e.g., the average score could be used
as a threshold [7], [21], [20].

All previous work focused on evaluating code readability
as a property of the source code alone (generalist code
readability prediction). Let us go back to the definition of
code readability we gave before, i.e., readability is the ease
with which a program can convey information to a reader.
Code readability depends not only from the program, but also
from the reader. Different developers might find code written
in different ways more or less readable. Let us consider the
example in Fig. [T taken from the dataset by Buse and Weimer
[S]. Some developers marked this snippet as highly readable
(5/5), while others as highly unreadable (1/5). Probably, some
evaluators focused more on its conciseness (thus marking it
as readable), while others on the lack of indentation or on



XSp = jj_scanpos;
if (jj_scan_token
jj_scanpos = xsp;
if (jj_scan_token

(100) ) {

(101) ) return true;

Fig. 1. Example of controversial snippet.

the lowly descriptive identifiers (which make it unreadable to
some).

Despite the variability of the judgments of single developers,
no previous work has tried to define a personalized code
readability assessment model, i.e., a model that is based
not only on the characteristics of the source code, but also
on the preferences of the reader. Such a model might be
useful to better allocate the resources in maintenance activities,
e.g., to reduce the chances that developers find themselves
maintaining (and thus reading) code they will struggle with.

In this paper, we present an empirical study in which we aim
to understand whether it is possible to define a personalized
code readability model. The main challenge we faced while
trying to define such a model lied in the lack of training data:
A new reader would need to manually provide their own code
readability evaluations to the train the model. We assume that,
in practice, developers would accept to provide only a few of
such evaluations. The only viable solution we saw fit to solve
this problem was a Large Language Model (LLM). LLMs
are pre-trained to achieve a complete knowledge of several
programming languages. Thus, as previous work shows, a few
examples are sufficient to train the model to complete a given
task (few-shot learning).

First, we studied how generalist code readability assessment
models perform in the task of assessing readability at devel-
oper level. We compared a state-of-the-art model (the one by
Scalabrino et al. [20]) with an additional baseline that relies
on an LLM (GPT-40) and with an ideal generalist approach
which predicts, for a given snippet, the readability as perceived
by the majority of developers who evaluated it. We found that
both the realistic approaches achieve result which are close to
the ideal model. Still, in any case, we observe that generalist
models can predict developer-specific readability judgments
with a relatively small accuracy (64% and 47%, depending on
the dataset). Thus, we compare the best (realistic) generalist
model with an LLM-based personalized model. Surprisingly,
the personalized model achieves worse result than the gener-
alist model.

To analyze this phenomenon more in depth, we performed
a manual evaluation of the datasets we adopted in our ex-
periments. Specifically, we tried to look for evidence of self-
contradictory evaluations, i.e., readability evaluations given to
two different snippets by the same developers that contradict
each other (i.e., we could find no rational explanation in the
code that motivated the evaluations). We found that about 32%
and 23% of the evaluations in the datasets by Buse and Weimer
[S] and Scalabrino et al. [21] might contain contradictions,

respectively. Our results call for the for the definition of new
labeled dataset with a more principled and objective way
of annotating the snippets in terms of readability. Also, our
study shows that there is a substantial margin of improvement
obtainable from a personalized model as for the evaluations
provided by specific developers, we are still far from having
such models.

II. BACKGROUND: CODE READABILITY ASSESSMENT

In this section, we first introduce the code readability
datasets available in the literature. Then, we present the
state-of-the-art generalist code readability assessment mod-
els. Finally, we conceptualize personalized code readability
assessment.

A. Code Readability Datasets

A code readability dataset consists of a set of code snippets.
Each snippet is associated with a set of readability assessments
provided by developers. There are three main datasets in the
literature.

The one by Buse and Weimer (Dpg..,) [3], [6] contains 100
Java snippets, each of them evaluated by 120 developers. The
authors selected snippets made of three consecutive simple
statements (e.g., assignments, function calls) with other con-
text such as comments, excluding trivial snippets (e.g., import
statements, only comments, etc.). Therefore, the snippets are
relatively short and some of them are not compilable (e.g.,
they lack closing brackets, such as in the example in Fig. [I).
The annotators that volunteered for the study were primarily
computer science students. Thus, Dyg,, is a dense 100x120
matrix.

The dataset by Dorn (Dy) [[7] contains 360 snippets in Java,
Python, and CUDA, each of which has been evaluated by a
diverse subset of the developers. In other words, while 5,468
developers evaluated the snippet, not all developers evaluated
all the snippets. Thus, Dy is a sparse 360x5,468 matrix.

Finally, the dataset by Scalabrino et al. (Dy)[21] contains
200 Java snippet, all of which have been evaluated by 9
developers. Specifically, the authors first collected the methods
from 4 open-source Java projects, then selected the 200
most representative snippets to enrich the diversity of the
collected data. Differently from the other readability datasets,
the collected snippets have a method-granularity level. Such
snippets were rated by 9 computer science students. Dy is a
dense 200x9 matrix.

In all such datasets, readability has been assessed by asking
developers to provide a subjective evaluation on a Likert scale
from 1 (highly unreadable) to 5 (highly readable). Thus, all the
elements of Dyg., Dy, and Dy are in the set {1,2,3,4,5}.

B. Generalist Code Readability Assessment Models

Buse and Weimer [5], [6] were the first to introduce a model
that can automatically assess code readability. They introduced
a set of structural features, such as line length and number
of identifiers and used them to train a binary classifier. They
trained and tested their model on Dyg.,. To do that, they



assigned a ground-truth readability score to each snippet by
averaging the evaluations provided by the developers for it.
They set a threshold for labeling the snippets as readable and
unreadable based on the natural bimodal distribution of the
resulting readability scores of the snippets.

Posnett et al. [16] proposed a simpler model for code
readability that relied on only three metrics: Halstead volume,
token entropy, and lines of code (LOC). This approach out-
performed the earlier model, showing that fewer, well-selected
features could effectively model code readability. They evalu-
ated their approach on Dy, using the same methodology
adopted by Buse and Weimer [5] for assigning the binary
labels to the snippets.

Dorn [7] addressed the limitations of earlier Java-specific
models by introducing a more general approach applicable to
multiple programming languages. Dorn’s model incorporates
a broader range of features, including new structural features,
visual features, and a few textual features. Dorn identified
seven features that most strongly correlated with human
readability evaluation, achieving a Spearman correlation of
0.72. He tested his model on D,. Also in this case, he first
computed the snippet-level readability scores by average the
developers’ evaluation. Given that the distribution of ground-
truth readability scores in his dataset did not follow a bimodal
distribution (differently from Dy, ), he used the average score
as a threshold. His model outperformed the retrained model
by Buse and Weimer [6].

Scalabrino et al. [21], [20] introduced a comprehensive
model that integrates structural, visual, and several new textual
features. They compared such a model with the previously-
mentioned ones on all the datasets, i.e., Dyg, Dg, and Dy.
As for the latter, they used the same methodology adopted by
Dorn [7] to set a threshold.

Mi et al. tried for the first time to adopt Deep-Learning-
based approachs by means of a Convolutional Neural Network
(CNN) [IL1], graph neural networks [12], and a combination
of representations and techniques [10] to capture semantic,
visual, and semantic aspects of the source code. Differently
from previous work, they aimed at classifying snippets as
readable, unreadable, or neutral (i.e., ambiguous). To do that,
they computed for each snippet in Dyg.qy, Dy, and Dy the
average readability score. Then, based on the distribution of
the scores, they assigned the label unreadable to the first
quartile, the label readable to the fourth quartile, and the label
neutral to the remaining 50% of the snippets.

C. Personalized Code Readability Assessment

The basic step behind all the generalist code readability
assessment approaches consists of aggregating the evaluations
provided by developers to have a ground-truth readability
score for a given snippet. Conversely, a personalized code
readability assessment approach does not require this step.
In other words, the task consists of predicting the specific
readability evaluation that a given developer would provide
for a given snippet.

It is worth noting that this change of perspective comes
at a price. A generalist model can rely on the (snippet-based)
readability data available on several snippets (e.g., all the ones
available in Dyg,,, Dy, and Dy) to predict the readability of a
new unlabeled snippet, regardless of the developer who needs
this information. On the other hand, a personalized model
requires some training data that specifically comes from the
developer d who is willing to get the recommendation. In other
words, the datasets available can not be adopted (alone) to
define a personalized model in practice for developers different
from the ones who contributed to build them.

If we want to simulate such a scenario with the available
datasets, we need to re-define the learning base that can be
adopted to train a personalized model. Given any dataset D,
(assuming a dense snippet-developers matrix), a personalized
model can only learn from D d je. a version of D, from
which the column of the evaluations provided by the developer
d is removed. Besides that, the model can rely on a very
small number of evaluations from the evaluation column of
developer d (i.e., the ones that d would be asked to provide

to train the model).

In this context, the classification label is not based on an
aggregation, but rather on the original score provided by the
developer (i.e., the evaluation on a 5-points Likert scale, in the
currently available datasets). The choice of the threshold for
assigning a label should be strictly related to the methodology
adopted to acquire the assessments. Let us assume that a
Likert scale is used since all available datasets adopt such a
methodology to operationalize readability. If the objective is,
for example, to define a binary classification approach focused
on identifying snippets that a developer might struggle with,
an option could be to consider {1, 2} as clear indications of the
fact that the snippet is “unreadable” and {3,4, 5} as indications
that the snippet does not have substantial readability problems
(i.e., “readable”™).

To tackle the challenge related to the small number of
developer-specific data that can be used to train the model,
we propose the use of an LLM. LLMs are pre-trained on very
large codebases so that they learn the basics of the program-
ming language(s). Such models can be trained with just a few
examples (few-shot/in-context learning). Another problem that
arises in this context is the choice of the examples that should
be used for few-shot learning. Ideally, such examples should
reflect the peculiarities of the developer d. Remember that we
assume we do not have any code readability evaluation by
d and we want to simulate the scenario in which we choose
which snippet we should ask them to evaluate before they can
use the model.

We report in the next section the snippet selection algo-
rithms we tested in our empirical investigation for selecting
k best snippets from the available learning base (i.e., the
evaluations provided by other developers, such as the ones
available in Dyg.,, Dg, and D).



III. EMPIRICAL STUDY DESIGN

The goal of our study is to understand whether personalized

code readability assessment is feasible.

Our study is steered by the following Research Questions

(RQs):

e RQq: How effective are generalist models in predicting
developers’ subjective assessments of code readability?
With this first research question, we aim to understand
if personalized models are needed in the first place by
assessing whether generalist models are good enough in
this different evaluation scenario.

e RQo: How effective is an LLM-based personalized code
readability assessment model in predicting developers
subjective assessments of code readability? With the
second research question, we want to compare the best
performing generalist model from the previous RQ with
three versions of an LLM-based personalized model we
devised.

o RQ3: To what extent are developers’ code readability as-
sessments consistent? As we will show later, we obtained
a negative result for RQ,. With this last research question,
we want to investigate more in-depth the reasons why this
happened by studying the consistency of the readability
evaluations in the datasets we adopted.

A. Study Context

The context of the study consists of Java snippets and the re-
lated developers readability assessments. We decided to adopt
the dataset by Buse and Weimer [6] and the one by Scalabrino
et al. [21]. As previously reported in Section [[I} the dataset
by Buse and Weimer [6] (Dpg.1 ), contains the evaluations of
120 human annotators which assessed the readability score
of 100 Java code snippets, for a total of 12,000 annotations,
while the dataset by Scalabrino et al. [21] (D), contains the
evaluations of 200 Java code snippets by 9 evaluators, totaling
1,800 annotations.

We opted for Dyg,, and Dg because (i) they contain com-
plete evaluations from all annotators for each snippet (i.e., they
are dense matrices, differently from D;), and (ii) they feature
diverse snippet sizes (both small — Djg,,,— and medium —
D). These factors allow us for a more detailed analysis of
the singular developer assessments and for more generalizable
findings across the different levels of code granularity.

As previously explained, since we aim to tackle the problem
of predicting developer-specific code readability evaluations,
we do not need to aggregate the evaluations for each snippet,
differently from previous work. Instead, we need to define
the labels we will need to predict and a function to map the
readability scores assigned by the developers to such labels.
We decided to adopt three labels as in recent work [[L1]], [L1O],
[12]: “unreadable”, “neutral”, and “readable”. The mapping
we performed was based on the inherent meaning of the Likert
scale for this task: The scores s € {1,2} were mapped to
“unreadable”, the score s = 3 was mapped as “neutral”, and
the scores s € {4,5} as “readable”. We did this for both
Db&w and DS.

B. Experimental Procedure

RQ;: Generalist Models. To answer RQ;, we leverage two
different kinds of machine learning models on the previously-
reported datasets: A state-of-the-art model and a Large Lan-
guage Model (LLM). Since these are generalist models, they
can output a single readability label for a single snippet. In
our evaluation scenario, we measure the generalist models
predictions for each developer ground-truths. We adopted the
model by Scalabrino et al. [20] as state-of-the-art model since
recent work showed that it appears to be more correlated to
professional developers’ judgments [23]].

We retrained and tested the model for our different scenario
as follows. Given a developer d for which we want to predict
the readability scores, we first removed from the datasets the
scores they provided (thus simulating the realistic scenario
for which we have no data for d). Then, we assign the most
frequent developer-specific label given by the other developers
to each snippet in the set (ground truth). This allows us to
define a suitable training dataset for a generalist model and
a given developer d, letting the model learn from the most
shared developer preferences. Finally, we performed a 10-fold
cross-validation for each developer. With this, we have a model
which is trained on common readability preferences (i.e.,
generalist model), and test it on each developers’ subjective
assessments of code readability (as defined in RQy).

As for the LLM, we use GPT-40 [9] as a representative
Large Language Model. Since this is an already trained model
able to follow user instructions, we directly prompt GPT-40
to predict the readability label of a given snippet (i.e., we do
not re-train it). Specifically, we adopt the following prompt
template:

Prompt template for a generalist model

You are an expert code readability labeler.

Your role is to assign a code readability label. The
labels you can assign are: Unreadable, Neutral, and
Readable.

Now, assign the code readability label for the following
snippet:

target-snippet.

where target—-snippet is the snippet to evaluate. We
set the temperature to O to limit the variability in the model
responses.

Finally, we compare the models described above with a
hypothetical optimal generalist model, which we assume can
consistently return the most commonly assigned label for each
code snippet. This serves as an upper bound of a generalist
model.

To evaluate the model predictions for each developer score,
we compute precision, recall, and F1-score for all readability
labels. Precision is calculated as the ratio of correctly predicted
instances for each label to the total predictions for that label.
Recall is the ratio of correctly predicted instances for each



label to the total actual instances of that label. F1-score, the
harmonic mean of precision and recall, balances these two
metrics.

RQ;: Personalized Models. To answer RQ-, as previously
mentioned, we adopt an LLM for defining a personalized
model to predict developer subjective assessments of code
readability. The rationale is to tailor the model to developer
preferences by providing it with previous assessments that
can reflect their singular characteristics. We adopt GPT-40
[9] as a representative LLM for the personalized model since
GPT-based models have been shown very effective under few-
shot/in-context learning settings for code-related tasks [24],
131, (141, [T, [20, [26].

In our setting, we decided to set the number of examples k
that we should provide to the model to 3 (three-shot learning),
conjecturing that providing such a number of code readability
evaluation would be acceptable to most developers.

The first shot selection algorithm we test is HV (Highest
Variance examples). We select the three snippets that have the
highest readability score variance across developers different
from d. The idea is to ask the developers’ score on examples
that appear to be controversial in terms of readability for the
developers. In our evaluation, we simulate this algorithm by (i)
removing the column related to the evaluations of d from the
datasets, (ii) computing the variance of the evaluations, (iii)
selecting the three snippets with the highest variance, and (iv)
assigning to the them the labels provided for those snippets
by d.

The limitation of HV is that it might not select an example
for each label (e.g., it could select three snippets that d
judged as readable), thus not providing the model with enough
information to classify snippets from different classes. This
problem is due to the lack of knowledge of what will be
the evaluation provided by the developer. To understand the
ideal performance of HV, we test a non-realistic version of it,
(HV; — Highest Variance examples by Label). HV; knows the
evaluations provided by the developer d to all the snippets and
selects, for each label, the snippet with the highest variance
among other developers. Note that this is never possible, in
practice, but we can do it in our evaluation because we have
the vector of evaluations provided by d. In other words, HV,
is a version of HV that always provides an example for each
label.

Finally, for each developer, we test a simple third variant
that randomly picks the three snippets that should be evaluated
R).

For each snippet selection algorithm (SSA) we define a
fixed prompt pgis 4 for each developer d;. The prompt template
we adopted is reported at the end of this section. The three
shots contain the retrieved code snippets based on the SSA
and the developer specific code readability assessment, while
target-snippet represents the code snippet to label based
on developer preferences.

We compare each personalized model with the best gener-
alist model from RQq, which works as a baseline, to better
measure the actual contributions of such an approach. We test

the models only on the set of snippets that are never chosen
as examples by the given SS A for any developer. We evaluate
the model predictions as described in RQ;.

Prompt template for a given SSA

You are an expert and personal code readability labeler.
Your role is to assign a code readability label based on
the already known preferences of the developer. The
labels you can assign are: Unreadable, Neutral, and
Readable.

Below you find examples of the already known devel-
oper preferences.

SSAL; SSAg; SSA;

Now, assign the developer code readability label for
the following one:

target-snippet.

RQ3: Assessments Consistency. To answer RQ3, we con-
duct a qualitative analysis on the developers code readability
assessments. We randomly extracted 384 pairs of snippets
(sz, 8y) (with & # y). We chose such a sample size since this
ensures a confidence level of 95% and an expected margin of
error of = 5%. We annotate the snippets of each pair with
the respective evaluations provided by a randomly selected
developer d;. We do this for both Dyg.,, and D, (totaling 768
annotated pairs).

Two authors were tasked to independently evaluate to what
extent the evaluation provided for s, and s, of each pair
(again, by the same developer) was consistent. We say that
a pair of evaluations is consistent if there is at least a rational
reason (even if not subjectively acceptable to the evaluators)
for explaining it, while it is inconsistent otherwise. In other
words, we do not assess the consistency based on our concept
of code readability. For example, if s, and s, have very
similar code readability aspects (e.g., reasonable comments,
proper indentation, etc.) but the developer assigned conflicting
assessments (e.g., one rated as readable and the other as un-
readable), we mark the evaluation as inconsistent. On the other
hand, if there is an objectively observable difference, even if
contrasting with our notion of readability (e.g., the developer
reported that the code with more descriptive identifiers is less
readable than the other), we mark the evaluation as consistent.

Each annotator independently evaluated their own samples
reporting “yes” if the assessment given by the developer to
the two snippets was consistent and “no” otherwise. After the
independent evaluation, a third author assessed the cases in
which the two original evaluators disagreed (i.e., one of them
reported “yes” while the other assessed “no”) and provided a
third judgment as a tie-breaker. We report the percentage of
the inconsistent assessments we found for each dataset.

IV. EMPIRICAL STUDY RESULTS

A. RQI: Generalist Models

Table [l reports the performance of the generalist models on
D;, while Table [lI| reports the performance on the Dyg,,,. Due



TABLE I
GENERALIST MODELS ON DEVELOPERS FOR Ds.

Scalabrino et al. [20] GPT-40 Optimal Generalist Model
Precision Recall Fl1-score | Precision Recall F1l-score | Precision Recall Fl-score
Unreadable 0.38 0.17 0.21 0.33 0.13 0.14 0.47 0.42 0.38
Neutral 0.41 0.16 0.22 0.31 0.66 0.40 0.53 0.44 0.46
Readable 0.62 0.92 0.73 0.67 0.43 0.51 0.71 0.85 0.76
Average 0.47 0.42 0.39 0.44 0.41 0.35 0.57 0.57 0.53

TABLE II
GENERALIST MODELS ON DEVELOPERS ON Dyg, -

Scalabrino et al. [20] GPT-40 Optimal Generalist Model
Precision Recall Fl-score | Precision Recall F1-score | Precision Recall F1-score
Unreadable 0.48 0.44 0.40 0.43 0.16 0.20 0.52 0.49 0.45
Neutral 0.00 0.00 0.00 0.27 0.74 0.39 0.36 0.12 0.18
Readable 0.40 0.80 0.49 0.39 0.15 0.20 0.46 0.78 0.53
Average 0.29 0.41 0.30 0.36 0.35 0.26 0.44 0.46 0.39

to space limitations, both tables present results in terms of the
mean across all developers. Individual developer performances
are available in the replication package [25]].

Starting with D, (Table E[), we observe that all models,
including the hypothetical Optimal Generalist Model, achieve
relatively poor performance in predicting developers subjective
assessments of code readability. This shows a limitation for an
ad-hoc practical usage, which motivates the need for person-
alized approaches as explored in RQs. For the “unreadable”
label, which is valuable in practical scenarios, the Optimal
Generalist Model achieves a recall of 0.42 and an F1-score of
0.38, indicating that it struggles to identify unreadable code.
This shows the divergent perceptions among developers on
what constitutes “unreadable” code, even with an ideal model
that leverages the most frequently assigned label for each
snippet.

Comparing the model by Scalabrino et al. [20] and GPT-
4o, we find that the former outperforms the latter. Notably, for
the “unreadable” label, the feature-based model achieves an
F1-score of 0.21, compared to the much lower score obtained
by GPT-40 (0.14). This trend of higher performance extends
across other labels as well, with the feature-based model
reaching an overall accuracy of 58% and an average F1-score
of 0.39, whereas GPT-40 achieves only 44% accuracy and a
macro average Fl-score of 0.35.

Turning to the Dy, (Table[I), we observe a similar trend
as with D, where all models demonstrate limited effectiveness
in predicting developers’ subjective readability assessments.
The Optimal Generalist Model still shows limited effectiveness
in predicting the “unreadable” label, achieving a recall of 0.49
and an F1-score of 0.45, suggesting that developer assessments
for “unreadable” code are not consistently aligned.

Comparing the model by Scalabrino et al. [20] to GPT-40

Dyg.ry, we find again that the feature-based model generally
performs better, particularly for the “unreadable” label, where
it achieves an Fl-score of 0.40 compared to GPT-40 0.20.
The model by Scalabrino et al. [20] scores 0.00 across all
metrics for the “neutral” label, likely due to the very low
number of instances labeled as neutral in the dataset (only
nine). This imbalance makes it challenging for the model to
learn and predict this label effectively, further impacting its
overall performance.

Answer to RQq

Generalist models are not effective for personal-
ized code readability assessments. Surprisingly, GPT-
40 achieves lower performance than a significantly
smaller, feature-based model tailored for readability
predictions.

B. RQs: Personalized Models

We report the results of the personalized models compared
with those of the best-performing generalist model (i.e., the
one by Scalabrino er al. [20])) in Table [[TI] and Table [[V] for
D and Dy, respectively.

Starting with D, (Table [[I), we observe that the person-
alized model variants using GPT-4o0 with different 3-shots
snippet selection algorithms (HV, HV;, and R) offer mixed
results in comparison to the generalist model. Surprisingly,
none of the personalized variants (HV, HV;, or R) achieves
consistently higher performance across all metrics and labels,
albeit some improvements are evident in specific areas.

Regarding the “unreadable” label, GPT-40 with the HV
setting (high-variance examples) shows a moderate increase



TABLE III
FEAT MODEL VS GPT40 3-SHOTS ON Ds.

Scalabrino et al. [20] GPT-40 - HV
Precision Recall Fl-score | Precision Recall F1-score
Unreadable 0.38 0.17 0.21 0.50 0.21 0.21
Neutral 0.41 0.16 0.22 0.29 0.36 0.31
Readable 0.62 0.92 0.73 0.62 0.64 0.62
Average 0.47 0.42 0.39 0.47 0.41 0.38
Scalabrino et al. GPT-40 - HV,
Precision Recall Fl-score | Precision Recall F1-score
Unreadable 0.38 0.17 0.21 0.34 0.15 0.19
Neutral 0.42 0.16 0.22 0.32 0.44 0.34
Readable 0.62 0.92 0.73 0.65 0.63 0.62
Average 0.47 0.42 0.39 0.44 0.41 0.38
Scalabrino et al.
Precision Recall Fl-score | Precision Recall F1-score
Unreadable 0.38 0.17 0.21 0.46 0.15 0.19
Neutral 0.41 0.16 0.21 0.30 0.29 0.27
Readable 0.62 0.92 0.73 0.62 0.75 0.66
Average 0.47 0.42 0.39 0.46 0.39 0.38
TABLE IV

FEAT MODEL VS GPT40 3-SHOTS ON Dyg,qp-

Scalabrino et al. GPT-40 - HV
Precision Recall Fl-score | Precision Recall F1-score
Unreadable 0.47 0.54 0.47 0.57 0.19 0.23
Neutral 0.00 0.00 0.00 0.30 0.31 0.27
Readable 0.55 0.84 0.64 0.51 0.63 0.53
Average 0.34 0.46 0.37 0.46 0.38 0.34
Scalabrino et al. GPT-40 - HV,
Precision Recall Fl-score | Precision Recall F1-score
Unreadable 0.46 0.53 0.46 0.59 0.13 0.20
Neutral 0.00 0.00 0.00 0.29 0.39 0.31
Readable 0.55 0.84 0.64 0.51 0.65 0.55
Average 0.34 0.46 0.37 0.46 0.39 0.35
Scalabrino et al. GPT-40 - R
Precision Recall Fl-score | Precision Recall F1-score
Unreadable 0.46 0.53 0.46 0.53 0.17 0.23
Neutral 0.00 0.00 0.00 0.29 0.42 0.31
Readable 0.55 0.84 0.64 0.51 0.56 0.50
Average 0.34 0.46 0.37 0.45 0.38 0.35

in precision (0.50) compared to the model by Scalabrino
et al. [20] (0.38). However, it demonstrates a lower recall,
0.21 for HV against the 0.17 of the baseline, leading to a
comparable Fl-score. This means that GPT-40 HV provides
less false positives (unreadable snippets), but misses many
actual “unreadable” snippets.

In contrast, GPT-40 with the HV; SSA, which selects one
example for each readability label, achieves lower Fl-score
(0.19) than the baseline (0.21). The same happens for GPT-
4o with the R selection algorithm, which randomly select the
shots. Moving to the “neutral” and “readable” labels, the
baseline maintains a clear advantage in Fl-score. In details,
the model by Scalabrino et al. [20] achieves an Fl-score of

0.73 on the “readable” label, while the highest performance
among the personalized models (GPT-40 R) reaches only 0.66,
showing that the generalist feature-based model achieves better
performance in predicting developers preferences.

As for the dataset Dyg,, (Table , we see a similar pattern
to that observed in Dy, with none of the personalized settings
consistently outperforming the feature-based model across all
metrics and labels. About the “unreadable” label, GPT-40
with the HV selection algorithm achieves a higher precision
(0.57) than the baseline (0.47), demonstrating a stronger ability
to correctly identify unreadable snippets when predicted as
such. However, GPT-40 HV shows a low recall of 0.19,
compared to the baseline (0.54), leading to an Fl-score of
only 0.23, which is much lower than the one achieved by
the generalist model (0.47). This confirms that while GPT-40
HV is more precise, it fails to predict a significant amount of
“unreadable” snippets instances. Regarding the readable” la-
bels, the baseline model still holds performance advantage. For
the “readable” label, Scalabrino’s model achieves an F1-score
of 0.64, while the highest Fl-score among the personalized
models reaches only 0.55 (GPT-40 HV)).

Specific on Unreadable. In Fig. 2] and Fig. [3] we report
the distribution of Fl-scores for each developer on the “un-
readable” label for both Dy and Dyg,,, Which represents the
most important label in practical scenarios. We compare the
feature-based model with the three variants of personalized
code readability assessment model.

On Dg, the model by Scalabrino er al. [20] consistently
shows higher median F1-scores and tighter distributions com-
pared to all GPT-4o settings. In HV, GPT-40 shows a lower
median Fl-score and greater variability, showing less consis-
tent Fl-score than the baseline. In HV;, GPT-40 again shows
lower median and a wider range of Fl-scores. Lastly, in R
(random examples), GPT-40 shows the lowest median F1-
score, with scores tightly localized at lower F1-score.

The trends are similar on Dyg,,,, but the gap between the
baseline and GPT-40 is even more pronounced, providing
stronger evidence of the superior feature-based model per-
formance. The latter consistently achieves higher median F1-
scores with tighter distributions across all settings. It is worth
noting that GPT-40 distributions contain several outliers in HV
and HV;, where some developers F1-scores vary widely, which
suggest that the model works for some developers.

Answer to RQ»

Personalized LLLM-based code readability models are
less effective than a state-of-the-art generalist model.

C. RQ3: Consistency Analysis

The manual analysis of the developers code readability
assessments revealed a moderate level of inconsistency in
evaluations for both Dyg,,, and Dy datasets. Among the 384
samples in each dataset, the authors initially disagreed on
23 samples (approximately 6%) for Djg, and 59 samples
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Fig. 2. Fl-score boxplot for unreadable on Ds.

(approximately 15%) for Dg. To address these discrepancies,
a third author acted as a tiebreaker, carefully reviewing and
resolving the disagreements.

As a result, we observed 121 cases (approximately 32%) of
inconsistent evaluations in Dyg,,, and 90 cases (approximately
23%) of inconsistent evaluations in D,. These results suggest
that while developers generally demonstrate consistency in
their readability assessments, notable inconsistencies remain,
particularly in Dyg,.

We report in Fig. [] an example of inconsistent evaluation
from Dyg,,. The developer annotated the snippet on the left
as neutral and the one on the right as readable. However, the
we could not find any possible explanation for the different
evaluation since the two are very similar even in terms of their
structure.

Answer to RQg

Developers code readability assessments show moder-
ate consistency, with 32% inconsistency in Dpg.,, and
23% in D;.

V. DISCUSSION

We report below the lessons learned that the reader can take
away from this study. One of the main results we obtained is
that generalist models achieve bad performances on the task
of predicting developer-specific code readability perception.
An ideal model only achieves 0.53 Fl-score on D, and 0.39
F1-score on Dyg,,,.

Lesson Learned 1. The definition of personalized code
readability prediction models is worth future investigation.

We observed that state-of-the-art generalist models work
very well even in the personalized code readability prediction
task. As we observed in RQ;, the accuracy obtained by such
models is close to the upper-bound that can be theoretically
achieved in such a task by an optimal model.

Lesson Learned 2. There is limited room for improvement
of generalist code readability assessment models.

Surprisingly, we observed that a feature-based model
achieves better results than an LLM-based model (both gener-
alist and personalized). In particular, LLMs seem not to have a
good embedded understanding of what readable or unreadable
code mean. It is worth noting that in our experiment we did
not use the learning base constituted by the evaluation of
other developers for LLMs (while we did for the feature-based
model). This could explain the difference we observed. Future
work could try to fine-tune such models with such generic
evaluations, to provide the model with a baseline concept of
code readability before adding specific examples tailored on
the readability perception of the developer at hand.

Lesson Learned 3. Fine-tuning could be a viable option
to improve the performance of LLMs for code readability
prediction, specifically for the personalized models.

Finally, our manual investigation of the two datasets we
adopted in our experiment clearly shows that the annotators
provided self-contradictory evaluations. This is mostly due to
the simple procedure adopted in previous work for defining the
datasets, which consisted in asking developers to self-declare
their perceived readability. While such a procedure is good
enough for defining generalist models (the noise due to self-
contradictions does not significantly affect the average score
assigned to the snippet), it becomes not reliable for defining
a personalized model.
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// NEUTRAL
public String compact(String message) {
if (fExpected == null || fActual == null ||
areStringsEqual() )
return Assert.format(message, fExpected, fActual);

findCommonPrefix();
findCommonSuffix();

// READABLE
if(dataServiceId.compareTo(cmpDataServiceId) != 0) {
return false;

}

String country = getCountry();
String cmpCountry = cmp.getCountry();

Fig. 4. Example of inconsistent evaluation from Dyg, ..

Lesson Learned 4. Future work should aim at using more
principled procedures for defining code readability datasets,
e.g., based on the time needed to read the code [8)].

VI. THREATS TO VALIDITY

Threats to construct validity mainly pertain to the map-
ping of Likert scale scores into labels (readable, neutral,
unreadable) that may not accurately reflect meaningful read-
ability distinctions for all developers. A snippet rated “2”
by one developer might be considered “neutral” by another.
However, we believe that our methodology for mapping the
scores into labels in inherently more reliable than the one
used for generalist models because it relies on the intuitive

interpretation of the Likert scale itself (1 and 2 are related to
a negative score, 4 and 5 are related to a positive score, while
3 is neutral). In addition, developers may use the same score
for different reasons (e.g., one developer might rate a snippet
as “5” because it is concise, while another rates it “5” because
it has detailed comments).

Threats to internal validity concerned the experimental
choices that might have affected the results. A first concern is
related to the dataset used to answer our RQs (that, as we show
in RQs, is not entirely reliable). Besides, we only considered
a scenario in which only three developer-specific examples
are provided to the model. It is possible that the negative
results obtained in this paper is due to the fact that such a
small number of examples might not in principle allow the
model to fully capture the nuances of individual preferences.
Also, it is possible that the results of RQs are somewhat due
to subjective and arbitrary assessment by the annotators. We
mitigated this threat by using a rigorous qualitative analysis
process involving three annotators, as described in Section

Threats to external validity pertain the generalizability of
the results to other contexts. First, we only focused on Java
code. The results might not generalize to other programming
languages. Also, the settings evaluated in the study may not
entirely represent the complexity of real software development
environments. It is possible that the personalized model we
defined achieves completely different results on developers
with a different background. It is worth noting, however, that
our experiment indirectly involved 129 developers, which is
a quite large sample. Finally, we only tried our personalized
procedure with a specific LLM, i.e., GPT-40. The results might
not generalize to other LLMs.



VII. RELATED WORK

Sergeyuk et al. [23] assessed the alignment of existing
(generalist) code readability assessment models with devel-
opers’ views of LLM-generated code. Their study involved
(i) creating a dataset of LLM-generated Java code snippets,
(ii) applying code readability assessment models to evaluate
snippets, (iii) identifying the readability dimensions preferred
by developers using the retrieval grid technique, and (iv)
comparing model evaluations with human evaluations. The
research identified 12 key dimensions that influence code
readability and revealed a weak correlation between existing
code readability assessment models and developer ratings.
These findings highlight the need to develop more accurate
and developer-aligned code readability assessment models to
better support software development.

Sergeyuk et al. [22] further investigated the consistency
of developer assessments and the key aspects driving their
evaluations. By surveying 10 Java developers with similar
professional backgrounds, they evaluated 30 LLM-generated
Java code snippets across 12 readability dimensions. Their
findings showed moderate to good agreement among develop-
ers (Intraclass Correlation Coefficient = 0.78) and highlighted
dimensions such as code length, goal clarity, and naming
clarity as strongly correlated with readability. These results
emphasize the potential to align LLM-generated outputs with
developers’ notions of readability by focusing on stable,
consensus-based metrics.

While these studies provide significant insights, there are
notable gaps yet to be addressed. Sergeyuk et al. [23]] primarily
focus on broad dimensions of readability and shared developer
perspectives, without delving into the subjective nature of
code readability, specifically how individual developers per-
ceive and evaluate code. Developers bring their experiences,
preferences, and cognitive styles to the task of reading and
understanding code, which combined datasets and generalized
assessments fail to capture. Our study addressed these limita-
tions by proposing a personalized code readability assessment
approach.

Previous work already tried to tackle the problem of person-
alizing recommender systems for other software engineering
tasks. Allamanis [4] introduced the framework NATURALIZE
for learning the stylistic conventions of a codebase and sug-
gesting revisions to ensure consistency. By applying statistical
natural language processing to source code, NATURALIZE
achieved high accuracy in identifier naming and formatting,
with practical applications in development and code review.

Research conducted in an industry context showed that
developer- and application-specific models outperform gen-
eral models trained on entire codebases. However, temporal
changes in codebases have minimal effects on the performance
of language models [17]. These outcomes suggest that adapt-
ing models to individual developers or projects leads to better
results, reinforcing the idea that customization increases the
effectiveness of models in software development activities.
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VIII. CONCLUSION

We presented a study in which we aimed at understanding
whether we can define a personalized code readability predic-
tion model, i.e., a model that capture the specific developers’
notion of code readability. The results of our investigation
clearly show that we are not there yet. Specifically, we
observed that (i) generalist models are not sufficient to perform
such a task, (ii) even modern and promising technologies, like
LLMs, do not achieve satisfactory results, and (iii) currently-
available code readability datasets have substantial limitations.
Future work should take up the challenge and provide more
reliable datasets and more accurate personalized code read-
ability prediction models.

IX. DATA AVAILABILITY

We publicly release our replication package [25]], in which
we provide our datasets, the scripts for building and everything
needed to replicate all the results of our experiment.
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